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SUMMARY

A new algorithm is developed to improve the accuracy and efficiency of the material point method for
problems involving extremely large tensile deformations and rotations. In the proposed procedure, particle
domains are convected with the material motion more accurately than in the generalized interpolation
material point method. This feature is crucial to eliminate instability in extension, which is a common
shortcoming of most particle methods. Also, a novel alternative set of grid basis functions is proposed
for efficiently calculating nodal force and consistent mass integrals on the grid. Specifically, by taking
advantage of initially parallelogram-shaped particle domains, and treating the deformation gradient as
constant over the particle domain, the convected particle domain is a reshaped parallelogram in the deformed
configuration. Accordingly, an alternative grid basis function over the particle domain is constructed
by a standard 4-node finite element interpolation on the parallelogram. Effectiveness of the proposed
modifications is demonstrated using several large deformation solid mechanics problems. Copyright �
2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The material point method (MPM) [1, 2] is a particle-grid method suitable for solving large
deformations of complicated geometries in which the constitutive model is history-dependent and
therefore intolerant of advection errors. A traditional MPM implementation treats each particle as
a lumped mass. The generalized interpolation material point (GIMP) method [3] is a generalization
of the MPM that accounts for finite spatial extent occupied by each particle. MPM and GIMP have
been successfully used in simulation of a range of complicated engineering problems including
finite deformation plasticity, thin membranes, cracks and fracture, sea ice dynamics, granular
materials, multiscale problems, hypervelocity impact, and dynamic analysis of saturated porous
media among others [4–16]. Also, their basic algorithms and formulations have been studied by
a number of authors such as [17–29]. In MPM, the material domain is represented by a set of
material points or particles and uses a mixed Eulerian–Lagrangian method in which Lagrangian
particles carry history-dependent state data and an Eulerian background grid is used for calculation
of derivatives and solving the momentum equation. In general, this background mesh is fixed in
space and does not experience any distortion. The Lagrangian particles are followed throughout
the deformation, and there is no need to map the history data from one point to another. Also, the
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MPM formulation does not include nonlinear convection terms as appear in Eulerian formulations
because the background grid is considered as an updated reference. In summary, the MPM has the
advantages of both Eulerian and Lagrangian formulations. Another interesting feature of traditional
MPM is that this method enforces no-slip contact between bodies automatically without any further
computational costs. However, the MPM suffers from a ‘cell crossing instability’ for problems
involving large displacements. This instability occurs whenever particles cross boundaries of any
cell in the computational background grid and is due to the lack of smoothness of the grid basis
functions used as the interpolation and mapping functions in the MPM. By introducing weighting
functions and gradient weighting functions with a higher degree of smoothness, the GIMP is capable
of reducing these errors and improving accuracy [3]. These functions, which can be interpreted
as averages of the basis function and its gradient over the particle domain, are used for mapping
and interpolating data between particles and grid nodes as well as calculating internal and external
forces.

GIMP weighting functions are defined by the convolution of a characteristic function and the
grid basis function. The gradient weighting function is similarly defined by the convolution of
the characteristic function and the gradient of the grid basis function. Characteristic functions are
defined for each particle. When the choice of characteristic function is the Dirac delta function, the
traditional MPM formulation is recovered exactly. A commonly used characteristic function is the
‘top-hat’ function which is equal to unity within the particle domain, and zero elsewhere. One may
also choose fuzzy particle characteristic functions whose support is more extended [3]; however,
these have been used only for one-dimensional problems and are not common. Calculation of
the weighting and gradient weighting functions requires integration over the current support of
the particle characteristic functions. Accurately tracking particle domains is essential for accurate
calculation of these functions during finite deformation problems in which particle domains deform
and rotate significantly.

In practice, particle domains are often taken to be initially rectangles in 2D. In the literature,
two strategies for tracking the particle domains have been proposed. In the first, the particle
domains are assumed to be unchanged for all time (denoted as uGIMP here). In the second, particle
domain sizes evolve with time such that they continue to be rectangular or cuboid (denoted as
cpGIMP here). In cpGIMP, the particle size in each direction is determined from the corresponding
diagonal components of the deformation gradient tensor at the particle. Accordingly, the cpGIMP
is limited to problems for which deformation is along the grid directions so that off-diagonal
deformation gradient components are negligible. Another method for changing particle size has
been proposed and is described in [21]. This method is not investigated here because it likewise
has the shortcoming of neglecting shear distortion and has some challenging issues reported in
[23] even in comparison to cpGIMP.

For two-dimensional deformations, these available methods track particle domains as rectangles
that are always aligned with the grid. This assumption is not accurate for analyzing problems
with shear deformations or large rotations. Instead initially rectangular particle domains become
parallelograms under shear deformations, and they become misaligned with the grid under rota-
tion. In this case, exactly evaluating weighting and gradient weighting integrals entails very high
computational cost because of the need to divide the integration domain (i.e. the parallelograms)
over cell boundaries. In this paper, a novel alternative to standard grid basis functions is proposed
for efficiently calculating weighting function and gradient weighting function integrals. By using
alternative grid basis functions, division of particle domains along cell boundaries is avoided. This
work is called the convected particle domain interpolation (CPDI) method because it convects
initially rectangular particle domains into parallelograms, and it constructs an alternative basis
function field over the particle that exactly interpolates the grid basis function at the parallelogram’s
corners using the standard 4-node finite element interpolation. The proposed method can be natu-
rally generalized to higher order interpolation, as well as three-dimensional problems; for clarity,
however, only two-dimensional case studies are described in this paper. The proposed technique
will be shown to eliminate instabilities observed in uGIMP and cpGIMP without significantly
increasing computational cost.
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The proposed CPDI method uses standard finite element (FE) shape functions of 4-node quadri-
lateral (Q4) elements associated with the corners of any particle domain for constructing alternative
grid basis functions over that particle domain. In this method, alternative grid basis functions are
interpolated based on the values of grid basis functions at the corners of particle domains. Numer-
ical investigations have shown that this algorithm drastically improves the accuracy and stability
of the GIMP.

The organization of this paper is as follows: a brief review of the MPM and GIMP is presented
in Section 2. Section 3 is dedicated to describing the new CPDI method and contrasting it with
GIMP. Numerical examples of large deformation solid mechanics are given in Section 4, followed
by concluding remarks.

2. REVIEW OF THE MPM AND GIMP METHODS

In the MPM and GIMP method, the problem domain is discretized by a finite number of particles
that carry material data and deformation history. In contrast with most other particle methods in
which the momentum equations are solved on the particles, the momentum equations are solved
on the predefined background grid in the MPM. Since this grid carries no permanent material
information, the grid could be reconstructed each time step after deformation for convenience in
the computation. Often, the same fixed regular grid is used in all time steps. The solution procedure
of MPM consists of three major phases for any time step. In the first phase, material data and
external forces are mapped from the particles to the grid. The lumped mass matrix and nodal force
array are formed at the grid nodes. During the second phase, nodal accelerations are determined
by solving the discretized momentum equations as in the standard finite element method (FEM).
Finally at the current time step, the location, velocity, and deformation gradient of the particles are
updated based on the kinematic solution on the grid nodes. At the end of time step, the deformed
grid is discarded and the same regular grid is used for the next time step to avoid mesh distortion.
In other words, large deformations are modeled by moving the particles through the grid. Because
field variables are saved at particles, MPM has the advantages of both Eulerian and Lagrangian
descriptions.

The algorithm described here is the ‘update stress last (USL)’ version of the GIMP algorithm
described by Bardenhagen [17]. Using the cpGIMP, Wallstedt and Guilkey [23] demonstrated
that the USL scheme performs dramatically better than an alternative ‘update stress first (USF)’
scheme.

2.1. Equations common to all versions of the MPM

Throughout this paper, the subscript i refers to the grid nodes, p refers to the particles, and �
refers to the particle domain corners. At the first of each time step, particle mass, and momentum
are mapped to the grid nodes using equations of the form

mi =∑
p

�ipm p (1)

vi =
∑

p �ipm pvp
mi

(2)

where mi and vi are the mass and velocity at grid node i , mp and vp are the mass and velocity at
particle p, and �ip are the components of a mapping matrix that couples grid values to particle
values. We refer to �ip as the effective grid basis function at particle p. As discussed in the
following section, the scheme used to assign values to �ip distinguishes one MPM method from
the another.
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In the traditional FEM, the nodal force on the grid is defined as the following integral over the
entire domain �:

f inti =−
∫
�

∇�i ·rdV (3)

where �i is the basis function associated with grid node i . This integral is then broken into the
sum of integrals over elements as

f inti =−∑
e

∫
�e

∇�i ·rdV (4)

The MPM can be interpreted as instead breaking the integral in Equation (3) into a sum of integrals
over nonoverlapping particle domains

f inti =−∑
p

∫
�p

∇�i ·rdV (5)

Particle domains are often small and the variation of stress over them is negligible in comparison
with the variation of basis function gradients, especially when the particle spans an element
boundary where there can be a jump discontinuity in the basis function gradient. Therefore, the
stress over the particle domain is approximately constant. Treating the stress field as a constant
rp over each particle domain

f inti =−∑
p

∫
�p

∇�i dV ·rp (6)

Defining an effective basis function gradient over the particle as

∇�ip = 1

Vp

∫
�p

∇�i dV (7)

the nodal internal forces can be calculated

f inti =−∑
p

∇�ip ·rpVp (8)

Similarly, the �ip in Equations (1) and (2) can be regarded as the average of the basis function
over the particle domain.

Internal forces are combined with any external force, f exti , including body forces and tractions,
to calculate grid node accelerations as

ai =
f inti +f exti

mi
(9)

The explicit forward-Euler time discretization is used to update the grid node velocities

vn+1
i =vni +ai�t (10)

These updated grid node velocities are used for calculating velocity gradients at the particle
positions

∇vn+1
p =∑

i
∇�ipv

n+1
i (11)

Finally, time-dependent particle data such as position, velocity, volume, and deformation gradient
are updated according to

vn+1
p = vnp+∑

i
�ipai�t (12)
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xn+1
p = xnp+∑

i
�ipv

n+1
i �t (13)

Fn+1
p = (I+∇vn+1

p �t)Fn
p (14)

V n+1
p = JV 0

p (15)

in which J is the determinant of the deformation gradient of the particle, J =|Fn+1
p |.

Following this update of the kinematic state, the constitutive model is called to then update the
particle stresses to the end of the time step.

2.2. Existing material point methods

Various implementations of MPM are distinguished primarily by how they evaluate �ip and ∇�ip .
In the original MPM, sometimes called ‘standard MPM’, the density field was approximated as a
collection of point masses using Dirac delta functions. The resulting equations are equivalent to
using single-point integration in Equation (7).

In the GIMP method, the effective averages of the basis function and its gradient over the
particle domain were generalized by Bardenhagen and Kober [3] as

�ip ≡ Sip = 1

Vp

∫
��

�p(x−xp)Si (x)dx (16)

∇�ip ≡ ∇Sip = 1

Vp

∫
��

�p(x−xp)∇Si (x)dx (17)

where �p(x) is the particle characteristic function and �� denotes the current support of this
function. Typically, a ‘top-hat’ characteristic function is used in the GIMP:

�p(x)=
{
1 x∈�p

0 otherwise
(18)

Noting Equations (16) and (17), it is obvious that when the choice of characteristic function is the
Dirac delta function, the standard MPM formulation is recovered exactly.

Two strategies, uGIMP and cpGIMP, have been used to date to track evolving particle domains
under large deformations. In the uGIMP, deformation of the particle domain is neglected. Specifi-
cally, referring to the physical dimensions labeled in Figure 1.

{
an+1

bn+1

}
=
{
a0

b0

}
(19)

p

a0

b

(a) (b)

0
p

an+1

bn+1

Figure 1. (a) Initial and (b) updated particle domain during the analysis with uGIMP,
Equation (19) and cpGIMP, Equation (20).
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In the cpGIMP, the particle sizes evolve with deformation such that the particle domain remains
rectangular. Specifically, in terms of the diagonal components of the deformation gradient at the
particle

{
an+1

bn+1

}
=
[
Fn+1
xx 0

0 Fn+1
yy

]{
a0

b0

}
(20)

In summary, three methods have been used to date to evaluate the effective basis function and
its gradient: a Dirac delta function (or, single-point integration) in the standard MPM, a top-hat
average over the stationary domain in the uGIMP method, and a top-hat average over an evolving
rectangular domain in the cpGIMP method. Each of these approaches has shortcomings. The
standard MPM is subject to a so-called ringing instability caused by a sudden jump in basis
function gradient as a particle crosses a cell boundary. The uGIMP suffers from the extension
instability when the particles become separated to the extent that their regions of influence no
longer overlap. The cpGIMP rectifies the extension instability if the direction of loading is aligned
with the rectangular grid. However, the results are not indifferent to a frame change.

3. DESCRIPTION OF THE CPDI METHOD

When using a top-hat function in Equations (16) and (17), the strategy used for tracking particle
domains directly affect the results. The particle domains are tracked as rectangles with the uGIMP
and cpGIMP algorithms. However, under shear deformations the particle domains should become
parallelograms and under rigid body rotations they ought to become rotated rectangles. When
the particle domains are tracked as parallelograms, the GIMP needs complicated division of the
particle domain along cell boundaries and use of a numerical integration scheme for evaluating �ip
and ∇�ip . In this case, the GIMP algorithm can be applied with considerable computational costs.

In the CPDI method, a novel alternative to standard grid basis functions is proposed for efficiently
calculating integrals Equations (16) and (17) when the particle domains are parallelograms. By
using these alternative grid basis functions, dividing particle domains along cell boundaries is
avoided. Consequently, the CPDI method is capable of more accurately tracking particle domains
with a computational cost comparable with original GIMP.

3.1. Strategy for tracking particle domains as parallelograms

By using the fully updated deformation gradient at each particle, all deformations and rotations
computed at the particle are used for determining the updated particle domain at any time step. The
deformation gradient is typically already available since constitutivemodels often need it. Assuming
that the particle domains are parallelograms and that the deformation gradient is approximately
constant over the particle domain, the particle domains deform according to

rn+1
1 = Fn+1

p r01

rn+1
2 = Fn+1

p r02
(21)

in which (r01,r
0
2) and (r

n+1
1 ,rn+1

2 ) are the vectors defining particle domains at the initial and updated
configuration, respectively, as shown in Figure 2.

3.2. Proposed alternative evaluation of �ip and ∇�ip

An alternative to the standard grid basis functions is proposed which eliminates the requirement of
dividing of particle domains along cell boundaries in calculation of the integrals in Equations (16)
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(a)

(b)

Figure 2. (a) Initial and (b) updated particle domain during the analysis with CPDI method.

alternative grid shape functions

i j k l m n

S
app
i S

app
j S

app
l S

app
m S

app
nS         = 0

app
k (x)(x)(x)(x)(x)(x)

grid node particle

standard MPM grid shape functions

i j k l m n

particle domain

Si Sj Sl Sm SnSk (x)(x)(x)(x)(x)(x)

Figure 3. Alternative grid basis functions in a simple one-dimensional case.

and (17). Here, the alternative grid basis functions are constructed to be an interpolation of standard
grid basis functions at the four corners of each particle domain

Sappi (x)=
4∑

�=1
Qp

� (x)Si (x
p
� ) on �p (22)

in which Qp
� is the standard FE 4-node (Q4) shape function related to the �th corner of the domain

corresponding to particle p and xp� is the position of this corner. The original and alternative
basis functions differ from each other in the interior of the particle domain. However, since the
alternative basis function is an interpolation, it identically equals the exact basis function at the
particle corners. This property makes the CPDI evaluation of nodal forces exact in 1D. The
proof is a straightforward application of the fundamental theorem of calculus: the integral of a
function gradient depends only on the function value at the boundaries. Thus, since the original
and alternative basis functions are, by design, identical at the particle boundaries, both functions
give identical results for the nodal force integrals.

These alternative grid basis functions are depicted in Figure 3 for a simple one-dimensional
case. When the particles are far apart in massive tensile deformations, the particles in the CPDI
method are connected together based on these new grid basis functions.
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By using Equation (22), the top-hat versions of Equations (16) and (17) can be written as

�ip ≡ Sip∼= 1

Vp

∫
�p

Sappi (x)dx= 1

Vp

4∑
�=1

(∫
�p

Q p
� (x)dx

)
Si(x

p
� ) (23)

∇�ip ≡ ∇Sip∼= 1

Vp

∫
�p

∇Sappi (x)dx= 1

Vp

4∑
�=1

(∫
�p

∇Qp
� (x)dx

)
Si (x

p
� ) (24)

These functions are analytically calculated as

�ip
∼= 1

4 {Si (x
p
1 )+Si (x

p
2 )+Si (x

p
3 )+Si (x

p
4 ))} (25)

∇�ip
∼= 1

2Vp

{
(Si (x

p
1 )−Si (x

p
3 ))

[
rn1y −rn2y

rn2x −rn1x

]
+(Si (x

p
2 )−Si (x

p
4 ))

[
rn1y+rn2y

−rn1x −rn2x

]}
(26)

in which (rn1x ,r
n
1y) and (rn2x ,r

n
2y) are, respectively, the components of vectors rn1 and rn2 which

define the particle domain at the current time step (Figure 2).

4. NUMERICAL EXAMPLES

Four nonlinear large deformation dynamic examples are considered here for investigating the
accuracy and stability of the CPDI method. The first two examples were constructed based on
the method of manufactured solutions (MMS) [23, 30]. In the MMS, the solution of the model
equations is assumed a priori, then the external force required to achieve this solution is analytically
determined. This allows verification of nonlinear codes or algorithms by running them with the
computed external force and demonstrating that the assumed solution is recovered. Two examples
constructed based on the MMS in this paper are similar to those that were constructed and described
by Wallstedt and Guilkey [23] for studying the effects of different time integration schemes in
the GIMP algorithm. The following error norm was adopted to investigate spatial convergence of
these two examples:

Err=
√∑Nt

i=1

∑Np
p=1 ‖uapp(xp, ti )−uexact(xp, ti )‖2

Nt ×Np
(27)

in which Nt and Np are total number of particles and time steps, respectively, uapp(xp, ti ) and
uexact(xp, ti ) are the calculated and analytical displacement vectors, respectively.

In the spatial convergence studies performed for these two examples, simulations are done with
time steps as

�t=0.4
h

C
(28)

where h is the cell spacing and C is a constant defined by

C=
√

E

�0
(29)

in which E and �0 are the modulus of elasticity and initial density, respectively. C is the thin bar
wave speed, not the uniaxial strain wave speed.

The last two examples present the performance of the CPDI method for the problems in
which the standard MPM and GIMP method encounter instability. In all numerical examples, the
Neo-Hookean material model was assumed

r= � ln J

J
I+ �

J
(FFT−I) (30)
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where I is the identity tensor, F is the deformation gradient, J is the determinant of F, � is the
shear modulus, and � is the Lamé constant. While many complicated material models have been
successfully used in many implementation of the MPM, this simple and frame-indifferent material
model is sufficient for investigating the proposed modifications.

4.1. Axis-aligned displacement in a unit square

The following displacement field is assumed in a unit square (L×L, L=1m).

ux = A sin

(
2�X

L

)
sin

(
C�t

L

)
(31)

uy = A sin

(
2�Y

L

)
sin

(
C�t

L
+�

)
(32)

in which X and Y are the components of the global coordinate system in the reference configuration,
A is the maximum amplitude of displacement (in the numerical simulations, this parameter is
assumed to be 0.05m), t is the time, and C is the constant defined in Equation (29).

Using the MMS, the following body forces are found to be required to achieve the assumed
displacement field (detailed calculations are presented in Appendix A):

bx = �2ux
L2

(
4�

�0
−C2−4

�[ln Fxx Fyy−1]−�

�0F2
xx

)
(33)

by = �2uy
L2

(
4�

�0
−C2−4

�[lnFxx Fyy−1]−�

�0F2
yy

)
(34)

in which Fxx and Fyy are the non-zero components of the deformation gradient tensor. It should
be noted that, for the axis-aligned problem, only the diagonal terms of F are non-zero

Fxx = 1+ 2A�

L
cos

(
2�X

L

)
sin

(
C�t

L

)
(35)

Fyy = 1+ 2A�

L
cos

(
2�Y

L

)
sin

(
C�t

L
+�

)
(36)

The problem domain, a unit square, is discretized by using four different grid resolutions 8×8,
16×16, 32×32, and 64×64, with two particles per cell in each direction. The modulus of the
elasticity and Poisson’s ratio are E=1×107Pa and 	=0.3, respectively. Also, initial density is
assumed to be �0=1000kg/m3 and real-time simulation is T =0.02s, one full period of oscillation.
Convergence curves for this example using the standard MPM, uGIMP, cpGIMP, and CPDI method
are depicted in Figure 4. This example is not representative of general material deformations
because displacements are axis aligned. In this case, both cpGIMP and the CPDI methods track
the particle domains accurately as rectangles. Since convergence curves of the cpGIMP and CPDI
methods approximately coincide, it can be concluded that the alternative grid basis functions
proposed in the CPDI method can accurately evaluate �ip and ∇�ip . Also, the uGIMP that does
not track the particle domains leads to less accurate results in comparison with the cpGIMP and
CPDI methods. Three snapshots of the CPDI results using 16×16 cells at three representative
times are shown in Figure 5.

4.2. Radial expansion of a ring

In this example, the displacement field is prescribed with radial symmetry for a ring as

u(r, t)= A sin

(
C�t

2r̄

)
(c3r

3+c2r
2+c1r ) (37)
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Cell spacing

E
rr

or
 N

or
m

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

0.01 0.1 1.0

MPM

CPDI

uGIMP

cpGIMP

Figure 4. Convergence curves of the standard MPM, uGIMP, cpGIMP, and CPDI method for
the axis-aligned displacement in a unit square problem. (Convergence curves of the cpGIMP
and CPDI methods overlap, which is to be expected since this verification test involves no

shear distortions from rectangles to parallelograms.)

t=0.0 t=0.05 t=0.15

Figure 5. Three snapshots of the CPDI method simulation of the axis-aligned displacement in a unit
square problem using 16×16 cells at three representative times.

where r (and 
) are cylindrical coordinates in the reference configuration, t is the time, C is
the constant defined in Equation (29), A is the maximum magnitude of displacement, constants
c1, c2, and c3 are determined for the case in which normal stress vanishes on the inner (ri) and
outer (ro) surfaces of the ring and u(ro, t)= A sin(C�t/2r̄ ), and r̄ is the mean radius of the ring,
r̄ = (ri+ro)/2.

c1= −6ri
ro(ro−3ri)

, c2= 3(ro+ri)

r2o (ro−3ri)
, c3= −2

r2o (ro−3ri)
(38)

The required calculations to obtain the necessary body forces are described in Appendix A.
The following values are chosen for numerical simulations: modulus of elasticity E=1×107Pa,
Poisson’s ratio 	=0, initial density �0=1000kg/m3, inner radius ri=0.4m, outer radius ro=0.6m,
maximum magnitude of displacement A=0.1m, and real-time simulation T =0.02s which is one
full period of oscillation. Exploiting symmetry, only one-quarter of the ring is modeled. The
problem domain is discretized by using four different resolutions including 60, 248, 1001, and
4019 particles with two particles per cell in each direction as shown in Figure 6. Figure 7 shows
convergence curves for this example by using the standard MPM, uGIMP, cpGIMP, and CPDI
methods. As shown in Figure 7, the results obtained from the CPDI method are more accurate
because the CPDI method tracks the particle domains more accurately than other methods do.
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(a) (b) (c) (d)

Figure 6. Initial configuration of four different resolutions used in modeling one-quarter of the ring.

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

0.01 0.1 1.0

Figure 7. Convergence curves of the standard MPM, uGIMP, cpGIMP, and CPDI method for the radial
expansion of a ring problem. The simulations using the standard MPM are unstable at all four resolutions.

t=0.0 t=0.05 t=0.15

t=0.0 t=0.05 t=0.15

(a)

(b)

Figure 8. Three snapshots of the model with 248 particles in simulation of the radial expansion of a ring
problem using: (a) CPDI method and (b) cpGIMP.

Comparison between tracking particle domains in the cpGIMP and CPDI method is shown in
Figure 8. Three snapshots of the simulation with 248 particles using cpGIMP and CPDI method
at three representative times are depicted in Figure 8.
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q

gravity

Figure 9. The vertical bar problem: (a) Geometry and (b) discretized model.

4.3. A vertical bar with large tensile deformation

Extension instability, which is a common shortcoming of many particle methods, is investigated.
Vibration of a vertical bar under its own weight with very large deformations is considered in this
example. The upper end of the bar has roller boundary conditions, and the other boundaries are
traction free as shown in Figure 9. The modulus of elasticity, Poisson’s ratio, and initial density
are E=1×106Pa, 	=0.3, and �0=1050kg/m3, respectively. Real-time simulation is T =0.24s
and time steps are chosen as �t=0.00006s. In order to obtain very large deformations, gravity
of magnitude g=1000m/s2 is applied suddenly as a step function at t=0s. The initial problem
domain is discretized by using four grid cells with 3×3 particles per cell as depicted in Figure 9.
The simulations using the standard MPM, uGIMP, and cpGIMP exhibit the extension instability.
However, more accurately tracking the particle domains in the CPDI method results in a stable
simulation. For comparative study, five snapshots of the simulation using cpGIMP and CPDI
method are depicted in Figure 10. Because the cpGIMP fails to account for the shear part of
the deformation, it predicts unrealistic gaps and overlapping of the particle domains, ultimately
leading to the extension instability shown in Figure 10. These gaps and overlapping, although
present, are much smaller when using the CPDI method. Thus this method does not suffer from
extension instability in this example. Vertical displacements of particle q which is shown in Figure 9
during the simulation with the CPDI method are depicted in Figure 11. In order to show the
robustness of the CPDI method in simulation of extraordinarily large tensile deformations, this
example is re-solved using the CPDI method when the gravity is more than tripled to the value of
g=3500m/s2. Three snapshots of this simulation are depicted in Figure 12(a). The results show
that the CPDI method is stable. The proposed alternative nodal basis functions over the particle
domain (Equation (22)) lead to particles that will remain ‘in contact’ even when they are far from
each other. Figure 12(b) also shows the vertical displacements of particle q which is shown in
Figure 9.

4.4. Large deformation vibration of a cantilever beam

Tracking the particle domains as rectangles as is done in the cpGIMP does not account for large
rotations. This shortcoming and the modification presented in this work by tracking the particle
domains as parallelograms are investigated in this example. Large deformation vibration of a
highly compliant cantilever beam under its weight is induced by suddenly applying gravity at
t=0s. As shown in Figure 13, the left end of this beam is fixed and other boundaries are traction
free. The modulus of elasticity, Poisson’s ratio, and initial density are E=1×106Pa, 	=0.3,
and �0=1050kg/m3, respectively. Also, the gravity is considered as g=10m/s2. This example
is analyzed using time steps of �t=0.001s and real-time simulation is T =3s. The beam at its
initial configuration is discretized by using 16 grid cells with 3×3 particles per cell as depicted
in Figure 13. The standard MPM and cpGIMP simulations failed by spurious material separation.
Three snapshots of simulations using uGIMP, cpGIMP, and CPDI methods are depicted in Figure 14.
The cpGIMP uses only diagonal terms of the deformation gradient at the particle for updating the
particle domain presented in Equation (20). Pure rotation of 90◦ results in zero diagonal terms in
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(a)

(b)
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t=0.00 s t=0.08 s t=0.09 s t=0.10 s t=0.11 s

Figure 10. Five snapshots of simulations of the vertical bar problem using:
(a) cpGIMP and (b) CPDI method.
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Figure 11. Vertical displacements of particle q during the simulation of the
vertical bar problem with CPDI method.

the deformation gradient and the particle domain vanishes in this case. As shown in Figure 14, the
particle domain sizes decrease by increasing the rotation in the simulation done using the cpGIMP
and finally the analysis fails. On the other hand, the full deformation gradient is used for tracking
particle domains in the CPDI method as presented in Equation (21). Appropriately tracking particle
domains in the simulation using the CPDI method is shown in Figure 14. Figure 15 shows the
vertical displacements of particle q which is shown in Figure 13 during the simulation with uGIMP
and CPDI method.
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Figure 12. (a) Three snapshots of simulations of very large tensile deformations of the vertical bar problem
using CPDI method and (b) vertical displacements of particle q during the simulation with CPDI method.
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Figure 13. The cantilever beam problem: (a) Geometry and (b) discretized model.

4.5. Investigation of particle domain shape in the initial configuration

Particle domain shapes have an important role in the performance of the uGIMP, cpGIMP, and
CPDI methods. The uGIMP and cpGIMP formulations are limited to initial particle distributions
corresponding to rectangular particle domains whose edges are parallel with global coordinate
axes. However, particle domains can be parallelograms even in the initial configuration in the CPDI
method. This capability of the CPDI method is investigated in this section. For this purpose, the
examples in Sections 4.3 and 4.4 are re-solved when their geometry is rotated 45◦. In this case,
the problem domain cannot be accurately discretized by the rectangles whose edges are parallel
with global coordinate axes. Such discretization of the bar and cantilever beam are depicted in
Figures 16(b) and 17(b), respectively. In these rotated problem domains, only the CPDI method can
use the same discretizations as those previously used in examples of Sections 4.3 and 4.4. These
discretizations are shown in Figures 16(a), (c) and 17(a), (c). The bar with large tensile deformation
and large deformation vibration of the cantilever beam problems are re-analyzed using uGIMP,
cpGIMP, and CPDI methods. The symmetry boundary condition in the rotated bar problem, is
enforced by adding the same bar on the other side of the boundary which is subjected to gravity
with the same magnitude but opposite direction. For the rotated cantilever beam example, the
fixed boundary conditions are enforced by fixing the related grid nodes as shown in Figure 17.
For the bar problem, the simulations using the uGIMP, cpGIMP, and CPDI methods with mesh(b)
encounter the extension instability and cannot be completed. Only the CPDI method with mesh(c)
results in a stable simulation. Numerical simulations which are not presented here show that both
mesh types (b) and (c) lead to stable solutions using the uGIMP, cpGIMP, and CPDI methods
if sufficient refinement is used. One snapshot of the simulation using the CPDI method with
mesh(c) and displacements of particle q during the simulation are depicted in Figure 18(a) and (b),
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t=1.10 s t=1.20 s t=1.70 s

t=1.10 s t=1.20 s t=1.70 s

Figure 14. Three snapshots of simulations of the cantilever beam problem using:
(a) uGIMP; (b) cpGIMP; and (c) CPDI method.
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Figure 15. Vertical displacements of particle q during the simulation of the
cantilever beam problem with uGIMP and CPDI method.
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Figure 16. (a) Discretization of the bar problem used in example Section 4.3;
(b) and (c) discretizations of the rotated bar problem.
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Figure 17. (a) Discretization of the cantilever beam problem used in example Section 4.4;
(b) and (c) discretizations of the rotated beam problem.
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Mesh(a): vertical bar
same as example 4.3

CPDI method
Mesh(c): rotated bar

Figure 18. (a) One snapshot of simulation of the rotated bar problem using CPDI method with mesh(c);
(b) displacements of particle q during the simulation of the bar problem with CPDI method.

respectively. As shown in Figure 18(b), displacements of particle q are in a very good agreement
with those obtained in the example of Section 4.3.

In the cantilever beam problem, the simulations using the uGIMP with mesh(b) and CPDI method
with both mesh(b) and mesh(c) are stable. However, simulation using cpGIMP with mesh(b) is
unstable. If sufficient refinement is used, both mesh types (b) and (c) lead to the same results
using uGIMP and CPDI methods but corresponding results are not presented here. One snapshot
of the simulation using the CPDI method with mesh(c) and displacements of particle q during
stable simulations are depicted in Figure 19(a) and (b), respectively. The displacements of particle
q during the simulation of the rotated cantilever beam are measured with respect to the y′ axis
as shown in Figure 17. As depicted in Figure 19(b), the results obtained from the uGIMP and
CPDI methods with mesh(b) are not accurate. However, displacements of particle q obtained from
the simulation using CPDI with mesh(c) are in a very good agreement with those obtained in
the example of Section 4.4. For investigating poor quality of mesh(b), this example is solved
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t=1.20 s
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CPDI method
Mesh(a): horizontal beam
same as example 4.4
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Figure 19. (a) One snapshot of simulations of the rotated cantilever beam problem using
CPDI method with mesh(c); (b) displacements of particle q during the simulation of the

cantilever beam problem with uGIMP, CPDI, and FEM methods.

using the FEM by considering the particle domains as the Q4 finite elements. Similar to the
CPDI, the FEM with mesh(b) also failed to capture accurate results as shown in Figure 19(b).
The results obtained from the FEM with mesh(a) do not exactly coincide with those obtained
from the CPDI with mesh(a) because the CPDI uses the proposed alternative grid functions, which
are coarser than the FEM basis functions. It can be concluded that the CPDI method capability of
dealing with parallelograms as the particle domains in the initial configuration improves the results
where the problem domain boundaries are not aligned with the global coordinate axes. Although
we have limited the scope in this paper to parallelogram particle domains, the concept should
be straightforward to generalize to more general convex polygons that conform to complicated
boundaries, provided that an efficient interpolator (i.e. generalization of Q4 shape functions) is
available. A boundary conforming particle distribution can be generated using centroidal Voronoi
tessellation (CVT) [31].

5. CONCLUSION

The CPDI method has been developed and demonstrated to be generally more accurate and efficient
than the uGIMP and cpGIMP methods. The accuracy improvement is achieved by allowing particle
domains to track with the material motion in such a way that an initially rectangular particle
domain deforms into a parallelogram according to the local tangent mapping. The efficiency
improvement, which allows evaluation of the MPM integrals without having to partition the
integration domain into element intersections, is achieved by replacing the standard grid basis
functions with alternative grid basis functions that are a finite element interpolation of the standard
grid basis to the parallelogram corners. Similar to the standard grid basis, the alternative grid basis
is a partition of unity.

The new CPDI method has been demonstrated to be efficient, accurate, and stable in several
large deformation solid mechanics problems that were not solved satisfactorily with any previ-
ously existing MPM techniques. The cpGIMP and uGIMP methods develop inaccurate results and
even instability because they inaccurately track particle domains as rectangles. By using the full
deformation gradient at the particles, these problems are eliminated in the new CPDI method by
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convecting the particle domains with the material. In principle, the conventional GIMP approach
could also convect its integration domain with the material but doing so would lead to a very high
computational cost associated with dividing the particle domain along cell boundaries. Using the
alternative grid basis functions avoids the need to divide particle domains along cell boundaries.
In the interior of a particle, the CPDI alternative grid basis functions can differ significantly from
the standard grid basis functions, yet they still provide very efficient and accurate approximations
to the MPM integrals. These integrals are essentially averages of the standard grid basis function
and its gradient (�ip and ∇�ip) over the particle. The CPDI method evaluates these averages
accurately and efficiently even if the particle domain is stretched over many grid cells. In 1D, for
example, the fundamental theorem of calculus ensures that the nodal force integral (i.e. the integral
of the basis function gradient over the particle) depends only on the basis function values at the
particle’s boundaries; since the alternative grid basis is an interpolation of the standard grid basis,
it has identical boundary values and hence identical force integral values.

The first two verification examples presented in this paper were constructed based on the
MMS. The first example involved simultaneously applied horizontal and vertical extension and
compression waves. In this special case where the particle domains remain rectangular, consistent
with the cpGIMP assumptions, it was demonstrated that the accuracy and rate of convergence of
the CPDI method was comparable to the cpGIMP. The second MMS verification problem involved
deformation of rectangles to parallelograms to demonstrate superior accuracy of the CPDI method
in comparison with three most common MPM techniques currently used. The third example, which
was a compliant bar elongating under its own weight in response to the sudden application of a
large gravitational field, demonstrated that the CPDI method does not suffer from the extension
instability that was evident in the other MPM methods considered in this study. Finally, the fourth
example explains the disadvantage of the cpGIMP for analysis of problems including very large
rotations and how the CPDI method resolves this shortcoming. Moreover, numerical investigations
of the rotated problem domains show that the capability of the CPDI method to allow parallelograms
as the initial particle domains improves the results in comparison with simulations for which the
problem domain boundaries are not aligned with the global coordinate axes. More broadly, this
simulation suggests that particle distributions that conform to a boundary are desirable.

Although the presentation of the new CPDI method was limited to 2D deformations, it should
be self-evident how to generalize the techniques to 3D. Furthermore, although the CPDI method
has been here limited to the case of parallelograms deforming to parallelograms, the principles are
applicable to general polygons (or polyhedra in 3D).

APPENDIX A: APPLICATION OF THE METHOD OF MANUFACTURED SOLUTIONS
FOR CALCULATING BODY FORCES OF EXAMPLES 4.1 AND 4.2

The displacement solutions of the equations of motion are assumed a priori in the MMS. Given
the assumed prescribed displacements, the constitutive model can be evaluated to determine the
corresponding stress field. Therefore, the divergence of stress and acceleration can be evaluated, and
the required body forces to achieve these solutions are analytically determined from the equations of
motion. Two forms of the equations of motion are often presented in the FEM texts: total Lagrangian
and updated Lagrangian forms. Both of them are used successfully with the FEM formulations,
and solutions from both forms are equivalent [32]. The solutions are typically manufactured in
the total Lagrangian form in the MMS. However, MPM and GIMP are always implemented in
the updated Lagrangian form. Noting equivalence of the total and updated Lagrangian forms, a
numerical solution in the updated Lagrangian form can be compared with a manufactured solution
in the total Lagrangian form using mapping equations between two forms.

The equations of motion in the total and updated Lagrangian forms are considered, respectively

∇0 ·P+�0b= �0ü (A1)

∇ ·r+�b= �ü (A2)
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where ∇0· and ∇· are the divergence operators with respect to the initial and current configurations,
respectively, P is the first Piola–Kirchhoff stress, r is the Cauchy stress, b is the body force per
unit mass, �0 and � are initial and current densities, respectively, and u and ü are displacement
and acceleration, respectively.

The Neo-Hookean material model which is presented in the updated Lagrangian form in
Equation (30) was used in this paper. Equation (30) can be rewritten in the total Lagrangian form

P=� ln JF−1+�F−1(FFT−I) (A3)

where F is the deformation gradient, J is the determinant of F, � and � are the shear modulus
and Lamé constant, respectively.

F= I+ �u
�X

(A4)

in which X is the position in the reference configuration.

A.1. Calculation of body forces of axis-aligned displacement in a unit square problem

The following displacement vector is assumed in this example.

u=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A sin

(
2�X

L

)
sin

(
C�t

L

)

A sin

(
2�Y

L

)
sin

(
C�t

L
+�

)

0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A5)

in which X and Y are the components of the global coordinate system in the reference configuration,
A is the maximum amplitude of displacement, t is the time, and C is the constant defined in
Equation (29).

The deformation gradient is found by taking derivatives with respect to position according to
Equation (A4)

F=

⎡
⎢⎢⎢⎢⎢⎢⎣

1+ 2A�

L
cos

(
2�X

L

)
sin

(
C�t

L

)
0 0

0 1+ 2A�

L
cos

(
2�Y

L

)
sin

(
C�t

L
+�

)
0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(A6)

For any diagonal F , Equation (A3) may be expressed as

P=

⎡
⎢⎢⎢⎢⎢⎣

�

Fxx
ln(Fxx Fyy)+ �

Fxx
(F2

xx −1) 0 0

0
�

Fyy
ln(Fxx Fyy)+ �

Fyy
(F2

yy−1) 0

0 0 � ln(Fxx Fyy)

⎤
⎥⎥⎥⎥⎥⎦ (A7)
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After substituting stress P from Equation (A7) and the acceleration which is determined by twice
differentiating the displacement vector u in Equation (A5), Equation (A1) can be solved for the
body force b

b=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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�[ln(Fxx Fyy)−1]−�
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)

0
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⎪⎪⎪⎪⎪⎪⎪⎭

(A8)

A.2. Calculation of body forces of radial expansion of a ring problem

The displacement field with radial symmetry in Equation (37) is rewritten as a displacement vector
in the Cartesian coordinate system

u=

⎧⎪⎪⎪⎪⎪⎪⎨
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A sin
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)
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0
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(A9)

in which X and Y are the components of the global coordinate system in the reference configu-
ration, A is the maximum amplitude of displacement, t is the time, C is the constant defined in
Equation (29), constants c1, c2, and c3 were defined in Equation (38), and r̄ is the mean radius of
the ring.

The procedure discussed for the axis-aligned displacement in a unit square problem in
Appendix A.1 is used to determined the body force vector for the radial expansion of a ring
problem with zero Poisson’s ratio. However, the resultant equations are quite unwieldy in this
case. The body force for this problem is determined by using the following symbolic calculations
in MATLAB:

syms A X Y t rho mu C c1 c2 c3 rb
u=[A*sin((C*pi*t)/2/rb)*(c3*(X^2+Y^2)+c2*sqrt(X^2+Y^2)+c1)*X

A*sin((C*pi*t)/2/rb)*(c3*(X^2+Y^2)+c2*sqrt(X^2+Y^2)+c1)*Y
0];

F=[1+diff(u(1),X) diff(u(1),Y) 0;diff(u(2),X) 1+diff(u(2),Y) 0;0 0 1];
I=[1 0 0;0 1 0;0 0 1];
J=det(F);
Fp=[F(1,1) F(2,1) 0;F(1,2) F(2,2) 0;0 0 1];
P=simple(mu*inv(F)*(F*Fp-I));
dP=[diff(P(1,1),X)+diff(P(1,2),Y);diff(P(2,1),X)+diff(P(2,2),Y);0];
BodyForce=(diff(diff(u,t),t)-1/rho*dP);
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